

0957-4166(94)00309-2

Studies on Carbohydrates XVIII. Synthesis of Tetrasaccharide Corresponding to Biological Repeat Units of Serratia marcescens O18 Polysaccharide

Jian Zhang, Jianmin Mao, Hongming Chen, Mengshen Cai*

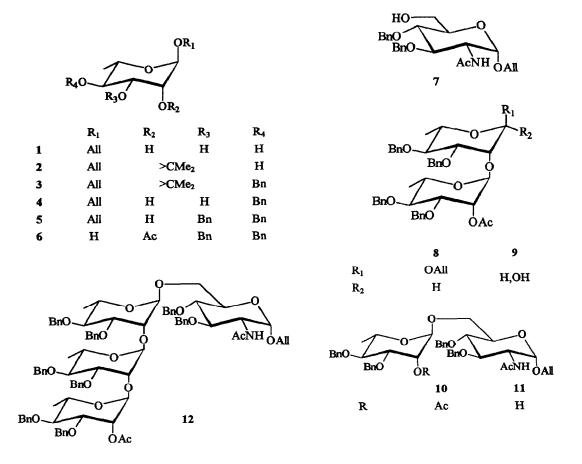
Department of Organic Chemistry, School of Pharmaceutical Sciences, Beijing Medical University, Beijing 100083, China

ABSTRACT: The synthesis of a blocked tetrasaccharide portion of the biological repeat unit, $[\rightarrow 2)L$ -Rhap $\alpha(1\rightarrow 2)L$ -Rhap $\alpha(1\rightarrow 2)L$ -Rhap $\alpha(1\rightarrow 6)D$ -GlcNAcp $\alpha(1\rightarrow 3)$, of the Serratia marcescens O18 polysaccharide was described. The key intermediate compounds was 3,4-blocked -L-rhamnose. All compounds were confirmed by use of high resolution NMR and FAB-MS techniques.

Introduction

Molecular recognition processes that are mediated by carbohydrate recognition markers are widespread and range from antigen-antibody interaction to cell-cell recognition and development. We chose the study of antigen-antibody interactions using bacterial antigens with which to probe such recognition process. *Serratia marcescens*, once thought to be a kind of harmless gram-negative bacteria, are widely distributed in soil, water, and on plant surfaces. In the last two decades, however, it has frequently been reported as a pathogen in urinary tract infection and in septicaemia as well as an opportunist organism colonizing the upper respiratory tract¹.

Result


The biological repeating unit of the lipopolysaccharide O-antigen of the bacterium Serratia marcescens has the following structure²:

$$[\rightarrow 2)$$
- α -L-Rhap $(1\rightarrow 2)$ - α -L-Rhap $(1\rightarrow 2)$ - α -L-Rhap $(1\rightarrow 6)$ - α -D-GlcNAcp $(1\rightarrow 3)$
A B C D

Thus far, we have described the synthesis of disaccharides³ and trisaccharide⁴. Retrosynthetic analysis indicated that the most advantageous disconnection would be at the B-C junction since this would yield the disaccharides donor A-B and acceptor C-D.

Starting from L-rhamnose, compound 1 was obtained in the yield of 92% by treatment of dried allyl alcohol and L-rhamnose monohydrate with concentrated H_2SO_4 as catalyst⁵. Compound 1 reacted with acetone in the presence of 4AMS and *p*-TsOH to give compound 2 in 86% yield⁶. Compounds 3 and 4 were obtained

according to reference⁷. With the procedure by Gigg⁶, we prepared 5 and 6 in the overall yields of 54.5% and 80%, respectively. Compound 7 was prepared from 2-deoxyl-2-acetylamino-D-glucose in four steps according to reference ^{8,9}.

The crucial glycosylation of compound 5 with 2-O-acetyl-3,4-O-dibenzyl- α -L-rhamnopyranosyl trichloroacetimidate in dried dichloromethane in the presence of TMSOTf and 4AMS according to the method of Schmidt¹⁰ afforded a 60.0% yield of compound 8. The ¹HNMR spectrum of compound 8 showed that the pure α anomer was obtained¹¹. With similar method, 76.2% yield of compound 10 was prepared by treatment of compound 7 with 2-O-acetyl-3,4-O-dibenzyl- α -L-rhamnopyranosyl trichloroacetimidate in the presence of boron trifluoride. Compound 9 was prepared directly from compound 8 in three steps according to Gigg⁶. Treatment of compound 10 with K₂CO₃ in dried MeOH afforded compound 11 in the yield of 94.7%. Compound 9 was converted to the corresponding imidate ester with similar procedure of compound 6 The

glycosylation of compound 11 with the imidate ester of cmpound 9 in dried dichloromethane in the presence of TMSOTf and 4AMS afforded a 60.5% yield of compound 12. The ¹HNMR and 2D NMR spectrum of compound 12 showed it is a pure α anomer¹¹.

Experimental

General. — Melting points were determined with a X₄ micromelting-point apparatus and are uncorrected. Optical rotations were determined with a Perkin-Elmer Model 241 MC polarimeter, for solution in CHCl₃ at 20°C. VLC¹² was performed on columns of silica gel H (Qingdao). TLC was performed on silica gel G_{F254} (Qingdao). IR spectra were recorded with a Perkin-Elmer Model 983 spectrophotometer, using KBr pellets for the crystalline samples and films for the syrup samples. ¹H NMR and ¹H-¹H COSY spectra were recorded with either a JEOL-GX-400 or a JEOL-GX-90 NMR spectrometer. ¹³C NMR spectra were recorded with either a JEOL-GX-400 or a JEOL-GX-90 NMR spectrometer operated at either 100 MHz or 22.5 MHz(Me₄Si as an internal standard in CDCl₃). Fast-atom-bombardment mass spectra were recorded with a VG ZAB-2F model spectrometer.

Allyl α -L-rhamnopyranoside(1)

A solution of L-rhamnopyranose monohydrate (2.0 g, 11 mmol) in dried allyl alcohol (25 ml) and concentrated H_2SO_4 (0.2 ml) was stirred 1 hr. at 100°C, then K_2CO_3 (0.2 g) was added to neutralize the solution. After removing allyl alcohol *in vacuo*, the crude syrup was chromatographed with VLC to afford compound 1 (1.84 g, 92.0%).

Allyl 2,3-isopropylidene- α -L-rhamnopyranoside (2)

p-TsOH (0.1 g) and 4AMS (1.2 g) were added to a stirred solution of compound 1 (2.0 g, 9.8 mmol) in dried acetone (20 ml). After refluxing for 1.5 hr, K₂CO₃ (0.1 g) was added to neutralize the solution, and then evaporated to a syrup, which was chromatographed to give compound 2 (2.1 g, 86.0%).

Allyl 2,3-O-isopropylidene-4-O-benzyl- α -L-rhamnopyranoside (3)

NaH (80%, 0.8 g, 27 mmol) was added to a stirred solution of compound 2 (2.5 g, 10.2 mol) in dried DMF (20 ml) with a ice bath. Then, benzyl bromide (1.5 ml) were added drowise. After 1 hr at room temperature, water (20 ml) were added. The mixture was extracted with ether (10 ml ×3). The organic layer was dried over MgSO₄ and concentrated to a syrup which was purified by VLC to give compound 3 (2.6 g, 80%). IR (vmax cm⁻¹): 3060, 3027 (C=C); 2981 (C-H); 1599, 1499 (C=C). NMR: δ H (90 MHz, ppm): 1.03, 1.30 (3H×2, s, CH₃×2), 1.12 (3H, d, J_{5,6} 6.35 Hz, H-6), 3.04-3.94 (4H, m, sugar ring H), 3.92-4.10 (2H, m, CH₂-CH=CH₂), 4.69-4.87 (2H, m, Ph-CH₂), 4.70 (1H, s, H-1), 5.10-5.20 (2H, m, CH₂-CH=CH₂), 5.55-5.85 (1H, m, CH₂-CH=CH₂), 7.10-7.21 (5H, m, Ar-H); δ c (22.5 MHz, ppm): 17.2 (C-6), 26.0, 27.8 (CH₃×2), 64.8-75.7 (sugar ring C, Ph-CH₂), 67 8 (CH₂-CH=CH₂), 96.1 (C-1), 98.6 (>C<), 117 6 (CH₂-CH=CH₂), 133.5 (CH₂-CH=CH₂), 126.8-138.2 (Ar).

Allyl 4-O-benzyl- α -L-rhamnopyranoside (4)

2N H₂SO₄ (3.0 ml) was added drowise to a stirred solution of compound **3** (2.0 g, 6.0 mmol) in MeOH (30 ml). The solution was maintained for 1.5 hr at 70°C, TLC showed that most compound **3** was converted. The mixture was allowed to cool to the room temperature, then, NaHCO₃ was added to the mixture. After removing 25 ml MeOH, CHCl₃ (20 ml) was added to the mixture. The organic layer was washed with water, dried over MgSO₄ and concentrated to a syrup which was purified to give crystalline compound **4** (1.48g, 84%). m.p. 53-4°C, $[\alpha]_D^{20}$ -60.2 (c 1.2, CHCl₃). IR (v_{max} cm⁻¹): 3355 (s, OH); 3060, 3029 (m, C=C); 2899 (s, C-H); 1644,1450 (m, C=C). NMR: δ H (400 MHz, ppm): 1.35 (3H, d, Js,6 6.34 Hz, H-6), 2 68 (2H, s, OH), 3.34 (1H, m, J4,5 9.28 Hz, J3,4 11.72 Hz, H-4), 3.74 (1H, m, J4,5 9.28 Hz, J5,6 6.35 Hz, H-5), 3.91-3 96 (2H, m, H-2, H-3), 3 96-4.17 (2H, m, CH₂-CH=CH₂), 4.69-4.87 (2H, m, Ph-CH₂), 4 78 (1H, s, H-1), 5.16-5.92 (2H, m, CH₂-CH=CH₂), 5.82-5.92 (1H, m, CH₂-CH=CH₂), 7.25-7.36 (5H, m, Ar-H); δ c (100 MHz, ppm): 17.90 (C-6), 67.20 (C-5), 67.80 (C-2), 71.0 (CH₂-CH=CH₂), 71.50 (C-3), 74 90 (Ph-CH₂), 81.57 (C-4), 98.45 (C-1), 117.28 (CH₂-CH=CH₂), 133.6 (CH₂-CH=CH₂), 127.8, 128.0, 128.5, 138.2 (Ar).

Allyl 3,4-O-dibenzyl- α -L-rhamnopyranoside (5)

Compound 5 was prepared with the method of Gigg⁶. $[\alpha]_D^{30}$ -47.2 (c 1 4, CHCl3). Anal. for C23H28O5: Found (calc.) C 71.59 (71.87), H 7.30 (7.29). FAB-MS (%): 383 (7) [M-1]⁺, 327 (8) [M-OAll]⁺, 181(58), 131(18), 91(100). IR (ν_{max} cm⁻¹): 3457 (bs, OH); 3062, 3029(m); 2973, 2910(m); 1493, 1449(s) NMR δ H (90 MHz, ppm): 1.35 (3H, d, J5,6 6.34 Hz, H-6), 4.75 (1H, s, H-1), 5.85 (1H, m, CH2-CH=CH2), 7.3-7.5 (10H, m, Ar-H); δ c (22.5 MHz, ppm): 16.43 (C-6), 96.68 (C-1).

2-O-Acetyl-3,4-O-dibenzyl-α-L-rhamnopyranose (6)

t-BuOK (4.0 g, 35.7 mmol) were added to a stirred solution of compound 5 (4.0 g, 10.42 mmol) in dried DMSO (40 ml). After 2 hrs at 50°C, ice-water (40 ml) were added and extracted with ether (20 ml ×3). The ether layer was dried over MgSO₄, and evaporated to a syrup, then, pyridine (15 ml) and acetic anhydride (10 ml) were added to the crude syrup. After stirring for 2.5 hrs, ice-water (30 ml) was added, then the mixture was extracted with CHCl₃ (15 ml ×3) The organic layer was washed with water and concentrated to a syrup. To the solution of the syrup in acetone (36 ml) and water (4 0 ml), HgO (4 0 g) and HgCl₂ (4 0 g) were added. After stirring for 2.5 hrs, TLC showed the reaction was completed. Removal of acetone *in vacuo* gave a syrup, then, CHCl₃ (40 ml) was added. The mixture was washed with saturated NaI solution and water, dried over MgSO₄. Evaporated and chromatographed to afford a syrup compound 6 (3.20 g, 80%). [α]_D²⁰ -23.5 (c 1.2, CHCl₃). Anal. for C22H26O6 Found (calc): C68 36 (68.39), H 6.94 (6.74). IR (vmax cm⁻¹): 3405 (s); 3086, 3061, 3029(s); 2975, 2932(m); 1739 (s, C=O), 1604. FAB-MS (%): 409(70) [M+Na], 385 (8) [M-1], 369 (48), 279(30), 261 (15), 181(91), 107(18), 91(100). NMR: δ H (90 MHz, ppm): 1.19 (3H, d, J_{5,6} 6.34 Hz, H-6), 2.05 (3H, s, CH₃CO) 5.01 (1H, d, J 1 45 H-1), 7.2-7.4 (10H, m, Ar-H); δ c (22 5 MHz, ppm): 16 50 (C-6), 19.60 (*C*H₃CO), 90.77 (C-1), 169.07 (CH₃CO).

Allyl 2-acetylamino-2-deoxy-3,4-dibenzyl- α -D-glucopyranoside (7)

To a stirred solution of allyl 2-acetylamino-2-deoxy-3,4-O-dibenzyl-6-O-trityl- α -D-glucopyranoside⁸ (3.0 g, 4.6 mmol) in dried acetonitrile (25 ml), Me₃SiCl (1.5 ml) and NaI (1.5 g) were added. After 15 min., water (25 ml) were added. The mixture was stirred for 15 min and extracted with CHCl₃ (15 ml ×3). The organic layer was washed with 10% Na₂S₂O₃ solution and water, dried over MgSO₄, concentrated to a solid which was purified with VLC to give a white solid compound 7 (1.45 g, 74.2%). m.p. 146-8°C, $[\alpha]_D^{29}$ +56.7 (c 1.3, CHCb). IR (v_{max} cm⁻¹): 3297 (s, OH, NH); 3064, 3031 (m, =C-H); 2922 (s, C-H); 1645(s, C=O), 1548, 1494, 1450 (m, C=C). NMR: δ H (400 MHz, ppm): 1.84 (3H, s, CH₃CONH), 2.05 (1H, s, OH), 3.67-3.83 (4H, m, H-3, H-4, H-5, H-6), 3.89-4.14 (2H, m, CH₂-CH=CH₂), 4.18-4.24 (1H, m, J_{1,2} 3.41 Hz, J_{2,NH} 9.26 Hz, J_{2,3} 9.77 Hz, H-2), 4.64-4.88 (4H, m, Ph-CH₂), 4.81 (1H, d, J_{1,2} 3.41 Hz, H-1), 5.18-5.25 (2H, m, CH₂-CH=CH₂), 5.33 (1H, d, J_{2,NH} 9.28 Hz, NH), 5.81-5.89 (1H, m, CH₂-CH=CH₂), 7.26-7.37 (10H, m, Ar-H); δ c (100 MHz, ppm): 23.32 (CH₃CONH), 52.53(C-2), 61.59 (C-6), 68.12 (CH₂-CH=CH₂), 71.60 (C-3), 74.78, 75.10 (Ph-CH₂), 78.10 (C-4), 79.9 (C-5) 96.77 (C-1), 117.63 (CH₂-CH=CH₂), 133.46 (CH₂-CH=CH₂), 127.79-138.3 (Ar), 169.87 (CH₃CONH)

Allyl 2-O-(2-O-Acetyl-3,4-O-dibenzyl-a-L-rhamnopyranosyl)-3,4-O-dibenzyl-a-L-rhamnopyranoside (8) To a stirred solution of 2-O-(2-O-acetyl-3,4-dibenzyl-α-L-rhamnopyranose (6) (650 mg, 1.70 mmol) in dried dichloromethane (20 ml), trichloroacetonitrile (0.8 ml), NaH (80%, 20 mg), and 4AMS (1.0 g) were added. After 40 min at room temprature, the mixture was filtered with silica gel and evaporated to give a crude syrup. Then dried dichloromethane (15 ml), compound 5 (620 mg, 1.61 mmol) and 4AMS (1.0 g) were added. After stirring for 10 min, 3 drops of TMSOTf were added to the mixture. The mixture was filtered after 1 hr, and washed with water, dried over MgSO4, evaporated to a syrup which was chromatographed to give a syrup compound 8 (730 mg, 60.1%). [a]_D²⁰ -19.3 (c 1.2, CHCb). Anal. for C₄₅H₅₂O₁₀ Found (calc.): C71.58 (71.81), H 6.85 (6.91). FAB-MS (%): 775(3) [M+Na]; 751(1.2) [M-1], 695(1), 499(5), 475(2.3), 369(68), 261(38), 181(98), 107(70), 91(100). IR (vmax cm⁻¹): 3059, 3027(m); 2973, 2910(m); 1739(s, C=0), 1493, 1449. NMR: δH (400 MHz, ppm): 1.34 (6H, d, Js, 6 6.35 Hz, H-6, 6'), 2.15 (3H, s, CH3CO), 3.53-3.96 (7H, m, sugar-ring H), 3.96-4.15 (2H, m, CH2-CH=CH2), 4.72 (1H, s, H-1), 4.83 (1H, d, Jr. 2 1.46 Hz H-1'), 5.12-5.28 (CH2-CH=CH2), 5.38 (1H, m, J1/2 1.47 Hz, H-2'); 5.79-5.91 (1H, m, CH2-CH=CH2), 7.26-7.60 (20H, m, Arδc (100 MHz, ppm): 17.51, 17.94 (C-6,6'), 21.04 (CH3CO), 67.90-80.0 (sugar-ring C, Ph-CH2, CH2-H) CH=CH2) 98.22 (C-1), 97.80 (C-1'), 117.40(CH2-CH=CH2) 127.28-138.4 (Ar-C, CH2-CH=CH2), 170.40 (CH_3CO)

 $2-O-(2-O-Acetyl-3,4-O-dibenzyl-\alpha-L-rhamnopyranosyl)-3,4-O-dibenzyl-\alpha-L-rhamnopyranose (9)$ t-BuOK (2.5 g, 20.5 mmol) were added to a stirred solution of 8 (1.0 g, 1.33 mmol) in dried DMSO (25 ml).After 2 hrs at 50°C, ice-water (40 ml) was added, and the mixture was extracted with ether (20 ml ×3). Theether layer was dried over MgSO₄, and concentrated to a syrup. Pyridine (10 ml) and acetic anhydride (7 ml)were added to the crude syrup. After stirring for 2.5 hrs, ice-water (30 ml) was added, then the mixture was extracted with CHCl3. The organic layer was washed with water and evaporated to a syrup. To the solution of the syrup in acetone (9 ml) and water (1 ml), HgO (1.0g) and HgCl₂ (1.0 g) were added. After stirring for 2.5 hrs, TLC showed the reaction was completed. Removal of acetone *in vacuo* gave a syrup. CHCl₃ (20 ml) were added to the syrup. The CHCl₃ layer was washed with saturated NaI solution and water, dried over MgSO₄ and concentrated to a syrup which was purified to afford a syrup compound 9 (620 mg, 65%). $[\alpha]_D^{20}$ -11 (c 1.0, CHCl₃). FAB-MS: 711(1) [M-1], 605(2), 369(20), 279(8), 261(31), 181(80), 91(100). IR (vmax cmr⁻¹): 3395 (s, OH), 3059, 3027(m); 2973, 2929 (m); 1738 (s, Ac C=O), 1600(w) 1492, 1450. NMR: δ H (400 MHz, ppm): 1.32 (6H, d, J5.6 6.32 Hz, H-6.6'), 2.15 (3H, s, CH₃CO), 2.21 (1H, s, OH), 3.37-4.01, (7H, m, H-2,3,3',4,4',5,5'), 4.49-4.93 (8H, m, Ph-CH₂), 4.80 (1H, s, H-1'), 5.14 (1H, d, J_{1.2} 1.46 Hz, H-1), 5.39 (1H, m, J^{1.2}: 1.47 Hz, H-2'), 7.25-7.38 (20H, m, Ar-H); δ c (100 MHz, ppm): 17.98 (C-6.6'), 21.10 (CH₃CO), 67.78-79.98 (sugar-ring C, PhCH₂), 92.41 (C-1), 97.89(C-1'), 127.44-138.36 (Ar), 170.50 (CH₃CO)

Allyl 2-acetylamino-2-deoxy-3,4-dibenzyl-6-O-(2-O-Acetyl-3,4-O-dibenzyl- α -L-rhamnopyranosyl)- α -D-glucopyranoside (10)

To a stirred solution of 2-O-(2-O-acetyl-3,4-dibenzyl-α-L-rhamnopyranose (6) (200 mg, 0.52mmol) in dried dichloromethane (10 ml), trichloroacetonitrile (0.5 ml), NaH (80%, 20 mg), and 4AMS (1.0g) were added. After 40 min at room temprature, the mixture was filtered with silica gel and the the filtered solution was concentrated to give a crude syrup. Then, dried dichloromethane (15 ml), compound 7 (230 mg, 0.52 mmol) and 1.0 g 4AMS were added. After stirring for 10 min, 1 drops of $BF_3 \cdot Et_2O$ was added to the mixture. The mixture was filtered after 2 hrs, and washed with water, dried over MgSO4, evaporated to a syrup which was chromatographed to give a white crystal compound 10 (320 mg, 76 1%). m.p. 112-114°C, $[\alpha]_{20}^{20}$ +43.7 (c 1.2, CHCl3). Anal. for C47H53NO11 Found (calc.): 69.94 (69.72), H 7.02 (6.81), N 1.84 (1.74). FAB-MS: 810 [M+1] (10), 752(5), 369(17), 181(100), 107(38), 91(56). IR (v_{max} cm⁻¹): 3317 (s, NH), 3060, 3027(m); 2912(m); 1739 (s, Ac C=O), 1644(s, AcNH C=O), 1539, 1490, 1450. NMR: OH (400 MHz, ppm): 1.29 (3H, d, J5,6 6.35 Hz, H-6'), 1.86 (3H, s, CH3CONH), 2.14 (3H, s, CH3CO), 3.40-3.94, (8H, m, H-3,3',4,4',5,5', 6), 3.94-4.12 (2H, m, CH2-CH=CH2), 4.23-4.28 (1H, m, J12 3.42 Hz, J2NH 9.77 Hz, J23 10 25 Hz, H-2), 4.53-4.94 (8H, m, Ph-CH2), 4.75 (1H, d, J₁, 2.3.42 Hz, H-1), 4.71 (1H, s, H-1'), 5.16-5.21 (2H, m, CH2-CH=CH2), 5.31 (1H, dd, J1',2' 1.47 Hz, J2',3' 3.42 Hz, H-2'), 5.36 (1H, d, J2,NH 9.77 Hz, NH), 5.81-5.88 (1H, m, CH2-CH=CH2), 7.25-7.34 (20H, m, Ar-H); & (100 MHz, ppm): 17.89 (C-6'), 21.08 (CH2CO), 23.43 (CH2CONH), 52.40 (C-2), 65.9-80.54 (sugar-ring C, PhCH2, CH2-CH=CH2) 96.67 (C-1), 97.71(C-1'), 117.74 (CH2-CH=CH2), 127.64-138.47 (Ar, CH2-CH=CH2), 169.76 (CH3CONH), 170.25 (CH3CO),

Allyl 2-acetylamino-2-deoxy-3,4-dibenzyl-6-O-(3,4-O-dibenzyl- α -L-rhamnopyranosyl)- α -D-glucopyranoside (11)

 K_2CO_3 (40 mg, 0.28 mmol) were added to a stirred solution of allyl 2-acetylamino-2-deoxy-3,4-dibenzyl-6-O-(2-O-Acetyl-3,4-O-dibenzyl- α -L-rhamnopyranosyl)- α -D-glucopyranoside (10) (200 mg, 0.25 mmol) in MeOH (20 ml). After 1 hr at room temprature, TLC showed the reaction was completed The mixture was filtered and concentrated to a syrup which was chramatographed to give a white solid compound 11 (180 mg,, 94.7%). m.p. 149-150°C [α]_D²⁰ +34.7 (c 1.2, CHCl3). Anal. for C4sHs₃NO₁₀ Found (calc.): C70.60 (70.40), H 6.91 (6.91), N 1.74 (1.82). FAB-MS: 768(4) [M+1], 710(1), 442(20), 384(51), 243(25), 181(91), 91(100). IR (ν max cm⁻¹): 3468 (s, OH), 3319 (s, NH), 3059, 3027(m); 2912(m); 1644(s, Ac C=O), 1538, 1450. NMR: δ H (400 MHz, ppm): 1.27 (3H, d, J₅, 6.35 Hz, H-6'), 1.87 (3H, s, CH₃CONH), 3.40-3.94, (9H, m, H-2',3,3',4,4',5,5',6), 3.92-4.12 (2H, m, CH₂-CH=CH₂), 4.23-4.29 (1H, m, J₁, 2 3.42 Hz, J₂, NH 9.76 Hz, J₂, 3 10.25 Hz, H-2), 4.52-4.91 (8H, m, Ph-CH₂), 4.75 (1H, d, J₁, 2 3.42 Hz, H-1), 4.71 (1H, s, H-1'), 5.17-5.25 (2H, m, CH₂-CH=CH₂), 5.36 (1H, d, J₂, NH 9.77 Hz, NH), 5.82-5.88 (1H, m, CH₂-CH=CH₂), 7.25-7.37 (2OH, m, Ar-H); δ c (100 MHz, ppm: 17.84 (C-6'), 23.49 (CH₃CONH), 52.40 (C-2), 65.61-80.65 (sugar-ring C, CH₂-CH=CH₂, PhCH₂), 96.80 (C-1), 98.97 (C-1'), 117.80 (CH₂-CH=CH₂), 133.55 (CH₂-CH=CH₂), 127.67-138.42 (Ar), 169.74 (CH₃CONH).

Allyl 2-acetylamino-2-deoxy-3,4-dibenzyl-6-O-{2-O-[2-O-(2-O-acetyl-3,4-O-dibenzyl-α-L-rhamnopyranosyl)-3,4-O-dibenzyl- α -L-rhamnopyranosyl]-3,4-O-dibenzyl- α -L-rhamnopyranosyl}- α -D-glucopyranoside (12) To a solution of 2-O-(2-O-Acetyl-3,4-O-dibenzyl-\alpha-L-rhamnopyranosyl)-3,4-O-dibenzyl-\alpha-L-rhamnopyranose (9) (200 mg, 0.28 mmol) in dried dichloromethane (20 ml), trichloroacetonitrile (0.3 ml), NaH (80%, 10 mg), and 4AMS (1.0 g) were added. After stirring for 40 min at room temprature, the mixture was filtered with silica gel. and evaporated to give a crude syrup. To the crude syrup in flask, dried dichloromethane (15 ml), compound 11 (200mg, 0.26 mmlo) and 4AMS (1.0 g) were added. After stirring for 10 min, 3 drops of TMSOTf were added to the mixture. The mixture was filtered after 2 hrs and washed with water, dried over MgSO₄, evaporated to a syrup which was purified with VLC to give a white solid compound 12 (230 mg, 60.5%). [α]²⁰₂ +34.7 (c 1.4, CHCl₃). Anal. for Cs7H39NO19 Found (calc.): C 71.19 (71.42), H 6.75 (6.45), N 1.08 (0.96). FAB-MS: 1500(10) [M+K], 1174(18), 369(48), 261(62), 181(100). IR (ν_{max} cm⁻¹): 3298 (s, NH), 3059, 3027(m); 2922(m); 1740 (s, Ac C=O), 1650 (s, AcNH C=O), 1544, 1493, 1450. NMR: δH (400 MHz, ppm): 1.20, 1.25 (9H, dd, J 6.35Hz, H-6',6",6"), 1.86 (3H, s, CH3CONH), 2.12 (3H, s, CH3CO), 3.36-3.97, (16H, m, sugar-ring H), 3.68 (1H, d, J2,3 10.27 Hz, H-3), 3.94-4.11 (2H, m, CH2-CH=CH2), 4.22-4.28 (1H, m, J1,2 3.42 Hz, J2,NH 9.76 Hz, J2,3 10.25 Hz, H-2), 4.47-4.92 (16H, m, Ph-CH2), 4.76 (1H, d, J1,2 3.42 Hz, H-1), 4.65, 4.70 (2H, s, H-1',1"), 4.98 (1H, s, H-1""), 5.16-5.24 (2H, m, CH2-CH=CH2), 5.35 (1H, d, J2NH 9.77 Hz, NH), 5.54 (1H, s, H-2"), 5.80-5.87 (1H, m, CH2-CH=CH2), 7.23-7.35 (40H, m, Ar-H); δc (100 MHz, ppm: 17.94 (C-6',6",6""), 21.10 (CH3CO), 23.45 (CH3CONH), 52.42 (C-2), 65.61-80.48 (suga-ring C, PhCH2, CH2-CH=CH2), 96.71 (C-1), 98.77 (C-1', 1"), 99.20 (C-1"), 117.82 (CH2-CH=CH2), 127.50-138.40 (Ar, CH2-CH=CH2), 169.76 (CH3CONH), 170.02 (CH3CO).

Acknowlegement

The project was supported by National Natural Sciences Foundation of China.

References

- 1. Pitt, T.L.; Erdman, Y.J. Method in Micribiology, 1984, 15, 173.
- 2. Oxley, D.; Wilkinson S.G. Carbohydr. Res., 1989, 195, 111.
- 3. Zhang, J.; Mao, J.M.; Chen, H.M.; Cai, M.S. Chinese Chem. Lett., (in press).
- Zhang, J.; Mao, J.M.; Chen, H.M.; Cai, M.S. 2nd China-Canada Symp. on Org. Chem., No.28, April, 1994, China.
- 5. Belbault, G.M.; Dotton, G.G.S. Can. J. Chem., 1972, 50, 3373.
- 6. Gigg, R., Payne, S.; Conant, R. J. Carbohydr. Chem., 1983, 2, 207.
- 7. Pozsgay, V.; Neszmelyi, A. Carbohydr. Res., 1980, 86, 143.
- 8. Warren, C.D.; Jeanloz, R. Carbohydr. Res., 1977, 53, 67.
- 9. Klemer, A.; Bieber, M.; Wilbers, H. Liebigs Ann. Chem., 1983, 1416.
- 10. Schmidt, R.R. Angew. Chem. Int. Ed. Engl., 1986, 25, 212.
- 11. van Steijn, A.M.P.; Kamerling, J.P. J. Carbohydr. Chem., 1992, 11, 665.
- 12. Targett, N.M.; Kilcoyne, J.P.; Green, B. J. Org. Chem., 1979, 44, 4962.

(Received 16 September 1994)